Estimation of Slip Distribution of the 2007 Bengkulu Earthquake from GPS Observations Using the Least-Squares Inversion Method
Author(s) -
Moehammad Awaluddin,
Irwan Meilano,
Sri Widiyantoro
Publication year - 2012
Publication title -
itb journal of engineering science
Language(s) - English
Resource type - Journals
ISSN - 1978-3051
DOI - 10.5614/itbj.eng.sci.2012.44.2.6
Subject(s) - geology , geodesy , inversion (geology) , slip (aerodynamics) , global positioning system , weighting , seismology , smoothing , inverse transform sampling , mathematics , tectonics , statistics , engineering , surface wave , acoustics , physics , telecommunications , aerospace engineering
Continuous Global Positioning System (GPS) observations showed significant crustal displacements as a result of the Bengkulu earthquake occurring on September 12, 2007. A maximum horizontal displacement of 2.11 m was observed at PRKB station, while the vertical component at BSAT station was uplifted with a maximum of 0.73 m, and the vertical component at LAIS station was subsided by -0.97 m. The method of adding more constraint on the inversion for the Bengkulu earthquake slip distribution from GPS observations can help solve a least squares inversion with an under-determined condition. Checkerboard tests were performed to help conduct the weighting for constraining the inversion. The inversion calculation of the Bengkulu earthquake slip distribution yielded in an optimum value of slip distribution by giving a weight of smoothing constraint of 0.001 and a weight of slip value constraint = 0 at the edge of the earthquake rupture area. A maximum coseismic slip of the optimal inversion calculation was 5.12 m at the lower area of PRKB and BSAT stations. The seismic moment calculated from the optimal slip distribution was 7.14 x 1021 Nm, which is equivalent to a magnitude of 8.5
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom