z-logo
open-access-imgOpen Access
The effects of methanesulfonic acid on seed germination and morphophysiological changes in the seedlings of two Colobanthus species
Author(s) -
J. Koć,
Janusz Wasilewski,
Piotr Androsiuk,
Wioleta Kellmann-Sopyła,
Katarzyna J. Chwedorzewska,
Irena Giełwanowska
Publication year - 2018
Publication title -
acta societatis botanicorum poloniae
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.297
H-Index - 29
eISSN - 2083-9480
pISSN - 0001-6977
DOI - 10.5586/asbp.3601
Subject(s) - germination , methanesulfonic acid , seedling , biology , proline , chlorophyll , horticulture , botany , chlorophyll fluorescence , chemistry , biochemistry , amino acid , organic chemistry
The effect of methanesulfonic acid (MSA) on the morphophysiology and biochemistry of the subantarctic species Colobanthus apetalus and the Antarctic species Colobanthus quitensis was examined. We evaluated the effects of various concentrations of MSA on the germination capacity and germination rate of seeds, seedling growth, chlorophyll fluorescence in cotyledons, and the proline content of seedlings under laboratory conditions at temperatures of 20°C (day) and 10°C (night) with a 12/12 h photoperiod. The examined C. apetalus seeds were grown in a greenhouse, and C. quitensis seeds were harvested in Antarctica and grown in a greenhouse (Olsztyn, Poland). The seeds of C. apetalus were characterized by the highest germination capacity and the highest germination rate, whereas C. quitensis seedlings were characterized by the most favorable growth and development. Only the highest concentrations of MSA decreased the intensity of chlorophyll fluorescence in the cotyledons of both Colobanthus species. The proline content of C. apetalus and C. quitensis seedlings increased significantly after MSA treatments. The results of this study clearly indicated that Colobanthus quitensis is more resistant to chemical stress induced by MSA. This is a first study to investigate the influence of MSA on the morphophysiology and biochemistry of higher plants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom