Can the soil geology and chemistry analysis of a site predict the geographic origin of wild edible mushrooms (Porcini group)?
Author(s) -
Elia Ambrosio,
Pietro Marescotti,
Gian Maria Niccolò Benucci,
Grazia Cecchi,
Michele Brancucci,
Mirca Zotti,
Mauro Mariotti
Publication year - 2019
Publication title -
acta mycologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.38
H-Index - 5
eISSN - 2353-074X
pISSN - 0001-625X
DOI - 10.5586/am.1130
Subject(s) - mushroom , chemistry , environmental chemistry , soil science , geology , food science
This study aimed to assess the element content of Porcini mushrooms collected from broadleaf Mediterranean forests (NW Italy) and underlying soil layers, and to elucidate the chemical connection between the mushrooms and their geographic site of origin. Comparing the elements in mushrooms with those in soil samples, we observed that the concentration of some microelements detected in mushrooms had similar distribution as that measured in both the soil layers assessed, especially with surface soil. Statistical analyses showed that the microelement pattern in mushrooms reflects the soil site of origin. Moreover, by comparing our results with other studies, we observed that the soil where Porcini grow is characterized by a high concentration of zinc. Some toxic elements were also detected in mushroom samples. Analysis of elements in mushrooms and soil layers can be used for quality assurance of natural products and help distinguish them from uncertified and unknown-origin products.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom