Nectary structure in Symphyglossum sanguineum (Rchb.f. ) Schltr. (Orchidaceae)
Author(s) -
Małgorzata Stpiczyńska,
Kevin L. Davies
Publication year - 2012
Publication title -
acta agrobotanica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 9
eISSN - 2300-357X
pISSN - 0065-0951
DOI - 10.5586/aa.2006.001
Subject(s) - nectar , biology , epidermis (zoology) , botany , anatomy , pollen
Ornithophily occurs in a great number of orchid species but despite this, researchers have largely neglected to investigate their nectaries. The aim of this study is to describe the nectary structure of Symphyglossum sanguineum, a species presumed to be pollinated by hummingbirds. The nectary is located at the free margins of auricles, which form a channel for the passage of nectar. The nectary, which consists of a single-layered epidermis and 2-3 layers of subepidermal cells, is supplied by collateral, vascular bundles. The nectary cells of S. sanguineum, like those of other ornithophilous orchids, have thick cellulose cell walls. A remarkable feature of these nectary cells is the dissolution of the middle lamella and the subsequent separation of epidermal cells. It is possible that this latter process facilitates the flow of the nectar to the nectary surface. The cuticle covering the nectary epidermis has micro-channels, but unlike the other species of ornithophilous orchids studied to date, it neither becomes disrupted nor detached from the epidermal cells. Abundant mitochondria, lipid droplets and smooth endoplasmic reticulum (SER) with an osmiophilic material are present in the cytoplasm of nectary cells. Some plastids with few lamellae contain numerous vesicles and osmiophillic globules whereas others accumulate starch. SER lamellae are often closely associated with plastids and the contents of the former organelles closely resemble osmiophillic globules. Secretory vesicles are common, especially near the outer, tangential wall indicating that granulocrine secretion possibly occurs in S. sanguineum
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom