z-logo
open-access-imgOpen Access
Knowledge Extraction from Trained Neural Network Scour Models
Author(s) -
H. Md. Azamathulla,
Aminuddin Ab. Ghani,
Nor Azazi Zakaria,
Chun Kiat Chang,
Leow Cheng Siang
Publication year - 2008
Publication title -
modern applied science
Language(s) - English
Resource type - Journals
eISSN - 1913-1852
pISSN - 1913-1844
DOI - 10.5539/mas.v2n4p52
Subject(s) - spurious relationship , artificial neural network , computer science , variable (mathematics) , variety (cybernetics) , artificial intelligence , machine learning , mathematics , mathematical analysis

This study extends the earlier contribution of Azamathulla et al. in 2005. Artificial neural networks (ANNs), due to their excellent capabilities for modeling complex processes, have been successfully applied to a variety of problems in hydraulics. However, one of the major criticisms of ANNs is that they are just black-box models, since a satisfactory explanation of their behavior has not been offered. They, in particular, do not explain easily how the inputs are related to the output, and also whether the selected inputs have any significant relationship with an output. In this paper, a perturbation analysis for determining the order of influence of the elements in the input vector on the output vector is discussed. The approach is illustrated though networks recommended in Azamathulla et al. 2005 for prediction of scour using neural networks. The analyses of the results suggest that each variable in the input vector (discharge intensity, head, tail water depth, bed material, lip angle and radius of the bucket) influences the depth of scour in different ways. However, the magnitude of the influence cannot be clearly quantified by this approach. Further it adds that the selection of input vector based on linear measures between the variables of interest, which is commonly employed, may still include certain spurious elements that only increase the complexity of the model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom