z-logo
open-access-imgOpen Access
Impact of Route Selection Metrics on the Performance of On-Demand Mesh-based Multicast Ad hoc Routing
Author(s) -
Natarajan Meghanathan,
Srilakshmi R. Vavilala
Publication year - 2010
Publication title -
computer and information science
Language(s) - English
Resource type - Journals
eISSN - 1913-8997
pISSN - 1913-8989
DOI - 10.5539/cis.v3n2p3
Subject(s) - multicast , computer science , computer network , polygon mesh , protocol independent multicast , routing (electronic design automation) , distance vector multicast routing protocol , routing protocol , distributed computing , algorithm , xcast , computer graphics (images)

The main objective of this paper is to study the stability and energy consumption issues of mesh-based multicast routing for mobile ad hoc networks (MANETs). This has been accomplished as follows: (i) The well-known mesh-based on-demand multicast routing protocol (ODMRP) is modified to choose routes based on two different route selection metrics: (a) hop count, as chosen by the Dynamic Source Routing (DSR) protocol and (b) predicted link lifetime, as chosen by the Flow-Oriented Routing Protocol (FORP). The modified ODMRP is referred to as ODMRP_DSR and ODMRP_FORP respectively; (ii) We propose an algorithm called OptMeshTrans to determine the sequence of stable multicast meshes connecting a set of sources to a set of receivers, such that the number of mesh transitions is minimal. Simulation results indicate that the multicast meshes determined using ODMRP_FORP are more stable than those of ODMRP_DSR. There is no appreciable difference between these two ODMRP implementations with respect to hop count per source-receiver path, number of edges and energy consumption per node. The meshes determined using OptMeshTrans are the most stable with relatively fewer edges and incur lower energy consumption per node when compared to the meshes determined using the other two protocols. 

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom