Contemporary agents in the management of metastatic castration-resistant prostate cancer
Author(s) -
Anil Kapoor,
Christopher Wu,
Bobby Shayegan,
Adrian P. Rybak
Publication year - 2016
Publication title -
canadian urological association journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.477
H-Index - 38
eISSN - 1920-1214
pISSN - 1911-6470
DOI - 10.5489/cuaj.4112
Subject(s) - docetaxel , enzalutamide , cabazitaxel , medicine , prostate cancer , denosumab , abiraterone acetate , oncology , radium 223 , chemotherapy , cancer , bone metastasis , androgen deprivation therapy , androgen receptor , osteoporosis
Docetaxel-based chemotherapy has been the standard of care for metastatic castration-resistant prostate cancer (mCRPC) since 2004. Over the past few years, there has been a significant paradigm shift in the treatment landscape of this disease. A deeper understanding of prostate cancer biology, along with the development of novel agents has created hope towards treating chemotherapy-naïve and resistant disease. Following the implementation of docetaxel as the first-line therapy for mCRPC, five novel therapies have demonstrated survival benefit in mCRPC. Cabazitaxel, abiraterone acetate, and enzalutamide are three agents recently approved for the treatment of mCRPC, having shown overall survival benefit in patients previously treated with docetaxel, while both abiraterone acetate and enzalutamide have also shown promise in the pre-docetaxel setting. Sipuleucel-T has shown overall survival benefit in asymptomatic mCRPC, while radium-223 provides survival benefit to patients with mCRPC who are symptomatic from their skeletal metastases in both docetaxel-naïve patients and post-docetaxel patients. Denosumab, an anti-RANKL antibody, has been approved for the prevention of skeletal-related events in patients with prostate cancer bone metastases. This review examines the phase 3 trials supporting the use of theses novel agents in the treatment of mCRPC. While these agents provide incremental increases in patient survival, further study to determine the best choice, combination, and/or sequencing of administration is still necessary.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom