Automorphisms on algebras of operator-valued Lipschitz maps
Author(s) -
María Burgos,
A. Jiménez-Vargas,
Moisés Villegas-Vallecillos
Publication year - 2012
Publication title -
publicationes mathematicae debrecen
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.468
H-Index - 37
eISSN - 2064-2849
pISSN - 0033-3883
DOI - 10.5486/pmd.2012.5099
Subject(s) - mathematics , automorphism , lipschitz continuity , pure mathematics , operator (biology) , algebra over a field , biochemistry , chemistry , repressor , transcription factor , gene
Let Lip(X; B(H)) and lip(X; B(H)) (0 < < 1) be the big and little Banach-algebras of B(H)-valued Lipschitz maps on X, respectively, where X is a compactmetric space and B(H) is the C-algebra of all bounded linear operators on a complexin nite-dimensional Hilbert space H. We prove that every linear bijective map thatpreserves zero products in both directions from Lip(X; B(H)) or lip(X; B(H)) onto it-self is biseparating.We give a Banach{Stone type description for the -automorphismson such Lipschitz -algebras, and we show that the algebraic reexivity of the -automorphism groups of Lip(X; B(H)) and lip(X; B(H)) holds for H separable.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom