z-logo
open-access-imgOpen Access
Behaviour and Optimization Aids of Composite Stiffened Hypar Shell Roofs with Cutout under Free Vibration
Author(s) -
Sarmila Sahoo
Publication year - 2012
Publication title -
isrn civil engineering
Language(s) - English
Resource type - Journals
eISSN - 2090-5114
pISSN - 2090-5106
DOI - 10.5402/2012/989785
Subject(s) - shell (structure) , structural engineering , finite element method , vibration , benchmark (surveying) , enhanced data rates for gsm evolution , quadratic equation , composite number , position (finance) , engineering , mathematics , geometry , algorithm , mechanical engineering , physics , acoustics , geology , geodesy , telecommunications , finance , economics
A scrutiny of the literature reveals that the free vibration characteristics of stiffened composite hypar shell with cutout are missing. So a generalized finite element formulation for the stiffened hyperbolic paraboloidal shells bounded by straight edges (commonly called as hypar shells) is attempted using an eight-noded curved quadratic isoparametric element for shell with a three-noded beam element for stiffener. Numerical problems of earlier investigators are solved as benchmark problems to validate the approach. A number of problems are further solved by varying the size of the cutouts and their positions with respect to the shell centre for different edge constraints. The results are presented in the form of figures and tables. The results are further analysed to suggest guidelines to select optimum size and position of the cutout with respect to shell centre considering the different practical constraints.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom