z-logo
open-access-imgOpen Access
Impedance and Electrical Modulus Study of Microwave-Sintered Ceramic
Author(s) -
V. Senthil,
T. Badapanda,
A. Chandra Bose,
S. Panigrahi
Publication year - 2012
Publication title -
isrn ceramics
Language(s) - English
Resource type - Journals
eISSN - 2090-7508
pISSN - 2090-7494
DOI - 10.5402/2012/943734
Subject(s) - nyquist plot , materials science , ceramic , arrhenius plot , sintering , dielectric spectroscopy , composite material , analytical chemistry (journal) , grain boundary , electrical impedance , mineralogy , activation energy , microstructure , chemistry , electrode , electrical engineering , organic chemistry , chromatography , electrochemistry , engineering
Bismuth layered structure SrBi2Ta2O9 ceramic is prepared by the microwave sintering technique via solid state route at 1100°C for 30 mins. X-ray diffraction analysis is used to analyze the phase purity, which identifies the orthorhombic structure with A21am space group. The fracture surface of the sintered pellet is visualized by scanning electron microscopy. Impedance spectroscopy is used to analyze the sample behavior as a function of frequency and temperature. Impedance and modulus study reveals the temperature-dependent non-Debye type relaxation phenomenon. The Nyquist plot shows a single arc representing the grain effect in the material, and the conductivity increases with increase in temperature. The Nyquist plot is fitted with an equivalent circuit, and the simulated parameters are well agreed with the calculated parameters. Arrhenius plot shows two different activation energies at below and above 300°C which identifies the phase transition of SrBi2Ta2O9 ceramic. The fatigue property is explained by the basis of activation energies, which shows that SBT sintered by microwave technique is more fatigue resistant than conventional sintering.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom