z-logo
open-access-imgOpen Access
Quick Multicomponent Analysis Based on Matrix Isopotential Synchronous Fluorimetry
Author(s) -
Géza Makkai,
János Erostyák
Publication year - 2012
Publication title -
isrn spectroscopy
Language(s) - English
Resource type - Journals
ISSN - 2090-8776
DOI - 10.5402/2012/917879
Subject(s) - fluorescence , derivative (finance) , matrix (chemical analysis) , biological system , sensitivity (control systems) , chemistry , component analysis , analytical chemistry (journal) , fluorescence spectroscopy , excitation , chromatography , mathematics , physics , statistics , electronic engineering , optics , engineering , quantum mechanics , financial economics , economics , biology
Fast and precise methods are important in chemical and physical analysis, but determination of concentration of selected components in mixtures may have special difficulties. Excitation-emission matrices (EEM) are widely used in characterizing fluorescence emission. Based on these primary data, we present an improvement of matrix isopotential synchronous fluorimetry (MISF) and a method which ensures a very fast multicomponent analysis. MISF is generally combined with derivative technique (DMISF) to be able to eliminate the contribution of the background emission. Unfortunately, it is too sensitive to noises and fluctuations; thus the concentration region where it can be used, was limited until now. Our first aim was to reduce the influence of measurement errors and to increase the sensitivity of known MISF method by more than one order of magnitude. As a further result, using improved MISF, we got a method which ensures very fast determination of the wanted compound's concentration both in presence of one- or even two-component background of unknown concentration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom