Oscillating Flows of Fractionalized Second Grade Fluid
Author(s) -
Muhammad Kamran Jamil,
Najeeb Alam Khan,
Abdul Rauf
Publication year - 2012
Publication title -
isrn mathematical analysis
Language(s) - English
Resource type - Journals
eISSN - 2090-4665
pISSN - 2090-4657
DOI - 10.5402/2012/908386
Subject(s) - generalized newtonian fluid , algorithm , computer science , thermodynamics , physics , viscosity , shear rate
New exact solutions for the motion of a fractionalized (this word is suitable when fractional derivative is used in constitutive or governing equations) second grade fluid due to longitudinal and torsional oscillations of an infinite circular cylinder are determined by means of Laplace and finite Hankel transforms. These solutions are presented in series form in term of generalized ,,(⋅,) functions and satisfy all imposed initial and boundary conditions. In special cases, solutions for ordinary second grade and Newtonian fluids are obtained. Furthermore, other equivalent forms of solutions for ordinary second grade and Newtonian fluids are presented and written as sum of steady-state and transient solutions. The solutions for Newtonian fluid coincide with the well-known classical solutions. Finally, by means of graphical illustrations, the influence of pertinent parameters on fluid motion as well as comparison among different models is discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom