z-logo
open-access-imgOpen Access
A Study of Non-Euclidean s-Topology
Author(s) -
Gunjan Agrawal,
Sampada Shrivastava
Publication year - 2012
Publication title -
isrn mathematical analysis
Language(s) - English
Resource type - Journals
eISSN - 2090-4665
pISSN - 2090-4657
DOI - 10.5402/2012/896156
Subject(s) - minkowski space , topology (electrical circuits) , mathematics , general topology , countable set , second countable space , euclidean space , separable space , metric space , pure mathematics , topological space , combinatorics , mathematical analysis , geometry
The present paper focuses on the characterization of compact sets of Minkowski space with a non-Euclidean -topology which is defined in terms of Lorentz metric. As an application of this study, it is proved that the 2-dimensional Minkowski space with -topology is not simply connected. Also, it is obtained that the -dimensional Minkowski space with -topology is separable, first countable, path-connected, nonregular, nonmetrizable, nonsecond countable, noncompact, and non-Lindelöf.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom