z-logo
open-access-imgOpen Access
Compression-Induced Solidification: A Novel Processing Technique for Precise Thermoplastic Optical Components with Negligible Internal Stresses
Author(s) -
Ariane Jungmeier,
Wolfgang Wildner,
Dietmar Drummer,
Ines Kühnert
Publication year - 2012
Publication title -
isrn optics
Language(s) - English
Resource type - Journals
ISSN - 2090-7826
DOI - 10.5402/2012/872816
Subject(s) - materials science , shrinkage , residual stress , composite material , thermoplastic , molding (decorative) , compression (physics) , thermal expansion , polycarbonate , compression molding , residual , mold , computer science , algorithm
In the field of optical components, thermoplastics are replacing more and more glass mainly because of their better freedom of design and their cost-effective processing techniques. Nevertheless, especially lenses do not have an ideal design for plastic processing, because of their varying thickness from the centre to the edge. These lead to great differences in shrinkage due to the dif-ferent coefficients of thermal expansion of melt and solid state and, consequently, directly lead to warpage and residual stresses with state-of-the-art processing techniques. A promising solution is a new, innovative technique—compression-induced solidification (CIS)—where the melt is compressed at constant temperature until it solidifies. This results in isochronic solidification of the whole part even at high temperatures and reduces residual stresses and warpage due to the cooling of a body with homogenous shrinkage. In this paper, CIS integrated in the injection molding process is introduced, and the influence of process parameters on inner properties and dimensional accuracy of CIS polycarbonate parts are illustrated. Trials carried out indicate that an optimum level of compression pressure at the end of glass transition range and a sufficiently long period of holding time (hereinafter the adapting time) for reaching homogeneous temperatures within the melt until pressure is applied will generate parts with low residual stresses and high dimensional accuracy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom