Propagation of Electric Dipole Radiation through a Medium
Author(s) -
Xin Li,
Henk F. Arnoldus
Publication year - 2012
Publication title -
isrn optics
Language(s) - English
Resource type - Journals
ISSN - 2090-7826
DOI - 10.5402/2012/856748
Subject(s) - dipole , physics , energy flow , electric field , electric dipole moment , magnetic dipole , metamaterial , electric dipole transition , transition dipole moment , computational physics , electromagnetic field , permittivity , rotation (mathematics) , optics , dielectric , energy (signal processing) , geometry , quantum mechanics , mathematics
When electromagnetic energy propagates through a material medium, the paths of energy flow may be altered, as compared to propagation in free space. We consider radiation emitted by an electric dipole, embedded in a medium with permittivity and permeability . For a linear dipole in free space, the field lines of energy flow are straight, but when the imaginary part of is finite, the field lines in the material become curves in the near field of the dipole. Therefore, the energy flow is redistributed due to the damping in the material. For a circular dipole in free space, the field lines of energy flow wind around the axis perpendicular to the plane of rotation of the dipole moment. When has an imaginary part, this flow pattern is altered drastically. Furthermore, when the real part of is negative, the direction of rotation of the flow lines reverses. In that case, the energy in the field rotates opposite to the direction of rotation of the dipole moment. It is indicated that in metamaterials with a negative index of refraction this may lead to an observable effect in the far field.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom