z-logo
open-access-imgOpen Access
Modeling Gender-Structured Wildlife Diseases with Harvesting: Chronic Wasting Disease as an Example
Author(s) -
Mo’tassem Al-arydah,
Robert J. Smith,
Frithjof Lutscher
Publication year - 2012
Publication title -
isrn biomathematics
Language(s) - English
Resource type - Journals
ISSN - 2090-7702
DOI - 10.5402/2012/802450
Subject(s) - chronic wasting disease , disease , population , basic reproduction number , wildlife , extinction (optical mineralogy) , wildlife disease , ecology , risk analysis (engineering) , biology , medicine , environmental health , pathology , prion protein , paleontology , scrapie
Chronic wasting disease (CWD) is a prion infectious disease that affects members of the deer family in North America. Concerns about the economic consequences of the presence of CWD have led management agencies to seek effective strategies to control CWD distribution and prevalence. Current mathematical models are either based on complex simulations or overly simplified compartmental models. We develop a mathematical model that includes gender structure to describe CWD in a logistically growing population. The model includes harvesting as a management strategy for the disease. We determine the stability conditions of the disease-free equilibrium for the model and calculate the basic reproduction number. We find an optimum interval of harvesting: with too little harvesting, the disease persists, whereas too much harvesting results in extinction of the population. A sensitivity analysis shows that the disease threshold is more sensitive to female than male harvesting and that harvesting has the greatest effect on the basic reproduction number. However, while harvesting may be a way to control CWD, the range of admissible harvesting rates may be very narrow, depending on other parameters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom