Red Fluorescence in Doped LaF 3 : Nd 3 + , Sm…
Author(s) -
S.G. Gaurkhede,
M.M. Khandpekar,
S. P. Pati,
Amit T. Singh
Publication year - 2012
Publication title -
isrn materials science
Language(s) - English
Resource type - Journals
eISSN - 2090-6099
pISSN - 2090-6080
DOI - 10.5402/2012/763048
Subject(s) - analytical chemistry (journal) , materials science , luminescence , scanning electron microscope , spectroscopy , fourier transform infrared spectroscopy , doping , nanoparticle , chemistry , optics , nanotechnology , physics , optoelectronics , chromatography , quantum mechanics , composite material
Hexagonal shaped LaF3 nanocrystals (NC) doped by Nd3+ and Sm3+ ions are synthesized using microwave technique. The prepared LaF3 sample was characterized by XRD to confirm the average crystalline size of the particle is close to 20 nm (JCPDS standard card (32-0483) of pure hexagonal LaF3 crystals). The Transmission Electron Microscope (TEM) analysis which indicates the size of the primary and secondary particle is in the range between 15 nm–20 nm. Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDAX) spectrometry have been carried out. The functional groups of the synthesized nanoparticles were confirmed by Fourier transform infrared spectroscopy (FTIR). The luminescent properties of the nanoparticles have been observed by excitation and emission spectra. Energy transfer from Nd3+ to Sm3+ has been observed. The transparency of the crystals has been confirmed using UV-VIS spectra. UV-Visible absorption spectrum indicates an energy gap of 4.9 eV and shows presence of wide transparency window. Non Linear Optical (NLO) properties of the synthesized nanoparticles have been studied. It has been found that Second Harmonic Generation (SHG) efficiency of LaF3=Nd3+, Sm3+ is less than pure Potassium Dihydroxyl Phosphate (KDP) crystals.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom