Electrodynamics of Bechgaard Salts: Optical Properties of One-Dimensional Metals
Author(s) -
Martin Dressel
Publication year - 2012
Publication title -
isrn condensed matter physics
Language(s) - English
Resource type - Journals
eISSN - 2090-7400
pISSN - 2090-7397
DOI - 10.5402/2012/732973
Subject(s) - pseudogap , condensed matter physics , superconductivity , physics , luttinger liquid , excitation , fermi liquid theory , symmetry breaking , optical conductivity , quantum mechanics , cuprate , quantum
The electrodynamic properties of the quasi-one-dimensional organic conductors (TMTSF)2X are discussed, with particular emphasis on important deviations from the simple Drude model, the transition from a Luttinger-liquid to a Fermi-liquid behavior at the dimensional crossover when pressure is applied or temperature reduced, indications of a pseudogap as well as a low-frequency collective mode. Superconductivity and spin-density-wave ground states breaking the symmetry and gaps should occur in the excitation spectra. The previous literature is summarized and the current status of our understanding presented. Novel THz experiments on (TMTSF)2PF6 and (TMTSF)2ClO4 not only shine light into some of the open questions, but also pose new ones.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom