z-logo
open-access-imgOpen Access
Early-Stage Thinning for the Restoration of Young Redwood—Douglas-Fir Forests in Northern Coastal California, USA
Author(s) -
Jesse F. Plummer,
Christopher R. Keyes,
J. Morgan Varner
Publication year - 2012
Publication title -
isrn ecology
Language(s) - English
Resource type - Journals
eISSN - 2090-4622
pISSN - 2090-4614
DOI - 10.5402/2012/725827
Subject(s) - thinning , sequoia , stand development , forestry , douglas fir , forest restoration , restoration ecology , silviculture , stage (stratigraphy) , forest management , environmental science , agroforestry , geography , ecology , geology , biology , forest ecology , ecosystem , botany , paleontology
Among forested parks and reserves of the Pacific Coast of the United States, the restoration of late-successional conditions to second-growth stands is a management priority. Some traditional silvicultural treatments may help achieve this objective. We evaluated early-stage thinning as a restoration treatment to facilitate the growth and development of young (33- to 45-year old), homogeneous, and second-growth stands of coast redwood (Sequoia sempervirens) and Douglas-fir (Pseudotsuga menziesii). Targeting both stand-level responses and dominant (focal) tree responses for analysis, we compared structural attributes of adjacent thinned and unthinned stands, 12–17 years after thinning. Thinned stands displayed enhanced metrics of tree vigor, growth, and mechanical stability, thereby improving response to future restoration treatments and broadening the range of potential stand conditions. We conclude that early-stage thinning has been successful as a preliminary restoration treatment because it accomplished many initial goals of forest restoration, while retaining sufficient tree numbers to buffer against possible attrition from future disturbances.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom