A Doubling Method for the Generalized Lambda Distribution
Author(s) -
Todd C. Headrick,
Mohan D. Pant
Publication year - 2012
Publication title -
isrn applied mathematics
Language(s) - English
Resource type - Journals
eISSN - 2090-5572
pISSN - 2090-5564
DOI - 10.5402/2012/725754
Subject(s) - kurtosis , skew , lambda , mathematics , monte carlo method , context (archaeology) , moment (physics) , statistics , statistical physics , computer science , physics , telecommunications , paleontology , classical mechanics , optics , biology
This paper introduces a new family of generalized lambda distributions (GLDs) based on a method of doubling symmetric GLDs. The focus of the development is in the context of L-moments and L-correlation theory. As such, included is the development of a procedure for specifying double GLDs with controlled degrees of L-skew, L-kurtosis, and L-correlations. The procedure can be applied in a variety of settings such as modeling events and Monte Carlo or simulation studies. Further, it is demonstrated that estimates of L-skew, L-kurtosis, and L-correlation are substantially superior to conventional product-moment estimates of skew, kurtosis, and Pearson correlation in terms of both relative bias and efficiency when heavy tailed distributions are of concern.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom