z-logo
open-access-imgOpen Access
On the Convergence of the Modified Riccati Equation
Author(s) -
Nicholas Assimakis,
Μαρία Αδάμ
Publication year - 2012
Publication title -
isrn signal processing
Language(s) - English
Resource type - Journals
eISSN - 2090-505X
pISSN - 2090-5041
DOI - 10.5402/2012/625897
Subject(s) - riccati equation , algebraic riccati equation , mathematics , logarithm , kalman filter , convergence (economics) , linear quadratic regulator , state (computer science) , control theory (sociology) , optimal control , mathematical optimization , mathematical analysis , algorithm , partial differential equation , computer science , control (management) , statistics , artificial intelligence , economics , economic growth
The modified Riccati equation arises in the implementation of Kalman filter in target tracking under measurement uncertainty and it cannot be transformed into an equation of the form of the Riccati equation. An iterative solution algorithm of the modified Riccati equation is proposed. A method is established to decide when the proposed algorithm is faster than the classical one. Both algorithms have the same behavior: if the system is stable, then there exists a steady-state solution, while if the system is unstable, then there exists a critical value of the measurement detection probability, below which both iterative algorithms diverge. It is established that this critical value increases in a logarithmic way as the system becomes more unstable.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom