Optimization Study on Supercritical Electrodeposition of Nickel Nanowire Arrays Using AAO Template
Author(s) -
Jau-Kai Wang,
J. M. Char,
Pei-Jung Lien
Publication year - 2012
Publication title -
isrn chemical engineering
Language(s) - English
Resource type - Journals
ISSN - 2090-861X
DOI - 10.5402/2012/610510
Subject(s) - nanowire , materials science , anodizing , supercritical fluid , nickel , wafer , nanotechnology , response surface methodology , silicon , current density , aluminium , composite material , optoelectronics , metallurgy , chromatography , chemistry , physics , organic chemistry , quantum mechanics
Highly ordered and nanometer-scaled nickel wire arrays were successfully prepared by supercritical electrodeposition method using anodized aluminum oxide (AAO) template. The results show that the well-ordered and free-standing nickel nanowire arrays can be constructed uniformly on a titanium-coated silicon wafer after removing the AAO template. The diameter and length of the nickel nanowire in the arrays can be obtained, about 100 nm and 10 um, respectively. Based on Box-Behnken design and Response Surface Methodology (RSM), a regression model was built by fitting the experimental results with a polynomial equation. The current density, pressure, and temperature are critical important factors of the growth mechanism of deposited nanowires. The optimal length of nanowires, 10.03 μm, can be achieved at the following conditions: current density 0.23 A/cm2, pressure 107 bar, and temperature 53°C.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom