z-logo
open-access-imgOpen Access
Aluminium Alloy-Based Metal Matrix Composites: A Potential Material for Wear Resistant Applications
Author(s) -
Rupa Dasgupta
Publication year - 2012
Publication title -
isrn metallurgy
Language(s) - English
Resource type - Journals
ISSN - 2090-8717
DOI - 10.5402/2012/594573
Subject(s) - abrasion (mechanical) , materials science , alloy , aluminium , metallurgy , composite material , wear resistance , cavitation , physics , mechanics
Aluminium alloy-based metal matrix composites (AMMCs) have been by now established themselves as a suitable wear resistant material especially for sliding wear applications. However, in actual practice engineering components usually encounter combination of wear types. An attempt has been made in the present paper to highlight the effect of dispersing SiC in 2014 base alloy adopting the liquid metallurgy route on different wear modes like sliding, abrasion, erosion, and combinations of wear modes like cavitation erosion, erosion abrasion, sliding abrasion, and the results obtained compared with the base alloy. It is found that there are a number of contributing factors for the resulting wear and all are not necessarily derogatory in nature. The limits within which the AMMCs can exhibit superior performance over the base alloy have been discussed. Worn surface and subsurface studies have been carried out to understand the mechanism of material removal and the role of the different contributing factors to material removal. Wear mechanisms that have been prevalent have been suggested and the possibility of making wear resistant components from the MMCs is discussed based on the experimental results obtained.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom