z-logo
open-access-imgOpen Access
Using Optimal Multiple Tuned Liquid Column Dampers for Mitigating the Seismic Response of Structures
Author(s) -
Parviz Ahadi,
Mohtasham Mohebbi,
Kazem Shakeri
Publication year - 2012
Publication title -
isrn civil engineering
Language(s) - English
Resource type - Journals
eISSN - 2090-5114
pISSN - 2090-5106
DOI - 10.5402/2012/592181
Subject(s) - damper , optimal design , genetic algorithm , tuned mass damper , frame (networking) , structural engineering , displacement (psychology) , computer science , convergence (economics) , nonlinear system , column (typography) , mathematical optimization , engineering , mathematics , physics , psychology , telecommunications , quantum mechanics , machine learning , economics , psychotherapist , economic growth
Tuned liquid column damper (TLCD) has been used extensively to improve the seismic behavior of structures, and different methods have been proposed for optimal design of TLCDs on linear structures. For improving the effectiveness of TLCDs, multiple tuned liquid column dampers (MTLCDs) have been proposed, and each TLCD has different dynamic parameters. In this paper designing optimal MTLCDs and assessment of its effectiveness in mitigating the response of structures under earthquake excitations have been studied. The parameters of TLCDs have been determined based on minimizing the maximum displacement of structure through solving an optimization problem. Genetic algorithm (GA) has been used for solving the optimization problem. For illustration, the method has been used for designing optimal MTLCDs for a ten-storey linear shear frame subjected to a white noise excitation. According to the results of numerical simulations it could be said that the proposed method for designing optimal MTLCDs has been effective regarding the simplicity and convergence behavior of the method. Based on designing MTLCDs for different values of MTLCDs total mass ratio, it has been concluded that MTLCDs total mass affects significantly the performance of MTMDs where its increasing has led to improve MTLCDs performance. Also, testing the optimal MTLCDs structure under different testing excitations has shown that the performance of MTLCDs depends on the characteristics of earthquakes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom