z-logo
open-access-imgOpen Access
Polymers of Intrinsic Microporosity
Author(s) -
Neil B. McKeown
Publication year - 2012
Publication title -
isrn materials science
Language(s) - English
Resource type - Journals
eISSN - 2090-6099
pISSN - 2090-6080
DOI - 10.5402/2012/513986
Subject(s) - nanofiltration , polymer , pervaporation , materials science , membrane , polymer science , gas separation , chemical engineering , covalent bond , nanotechnology , polymer chemistry , organic chemistry , chemistry , composite material , engineering , permeation , biochemistry
This paper focuses on polymers that demonstrate microporosity without possessing a network of covalent bonds—the so-called polymers of intrinsic microporosity (PIM). PIMs combine solution processability and microporosity with structural diversity and have proven utility for making membranes and sensors. After a historical account of the development of PIMs, their synthesis is described along with a comprehensive review of the PIMs that have been prepared to date. The important methods of characterising intrinsic microporosity, such as gas absorption, are outlined and structure-property relationships explained. Finally, the applications of PIMs as sensors and membranes for gas and vapour separations, organic nanofiltration, and pervaporation are described.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom