High-Pressure Hydrogen Adsorption in the Zeolites: A Grand Canonical Monte Carlo Study
Author(s) -
Xiuying Liu,
Jie He,
Rui Li
Publication year - 2012
Publication title -
isrn renewable energy
Language(s) - English
Resource type - Journals
eISSN - 2090-746X
pISSN - 2090-7451
DOI - 10.5402/2012/491396
Subject(s) - adsorption , hydrogen storage , hydrogen , grand canonical ensemble , monte carlo method , thermodynamics , chemistry , molecule , materials science , organic chemistry , physics , mathematics , statistics
The adsorption of hydrogen molecules on different zeolites at near room temperature and extremely high pressures has been simulated employing Grand Canonical Monte Carlo (GCMC) method. Some important physical amounts under different temperatures and pressures, such as adsorption isotherms, adsorption amounts, and isosteric heats were studied. We predict the storage capacity of hydrogen in ZON and CHA zeolites at different conditions. The results show that the hydrogen storage capacity of CHA is superior to that of ZON. The different hydrogen adsorption behavior between them is explained by the isosteric heats of adsorption at different temperatures. These results may help us to understand different hydrogen adsorption properties of these two zeolites, thus facilitate exploring new hydrogen storage candidates experimentally.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom