z-logo
open-access-imgOpen Access
On the Constructibility of Real 5th Roots of Rational Numbers with Marked Ruler and Compass
Author(s) -
Elliot Benjamin
Publication year - 2012
Publication title -
isrn algebra
Language(s) - English
Resource type - Journals
eISSN - 2090-6293
pISSN - 2090-6285
DOI - 10.5402/2012/487275
Subject(s) - ruler , compass , mathematics , rational number , pure mathematics , algebra over a field , combinatorics , geography , cartography , physics , quantum mechanics
We demonstrate that there are infinitely many real numbers constructible by marked ruler and compass which are unique real roots of irreducible quintic polynomials over the field of rational numbers. This result can be viewed as a generalization of the historical open question of the constructibility by marked ruler and compass of real 5th roots of rational numbers. We obtain our results through marked ruler and compass constructions involving the intersection of conchoids and circles, and the application of number theoretic divisibility criteria.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom