z-logo
open-access-imgOpen Access
Tuning the Mechanical Properties of Tapioca Starch by Plasticizers, Inorganic Fillers and Agrowaste-Based Fillers
Author(s) -
Edwin Azwar,
Minna Hakkarainen
Publication year - 2012
Publication title -
isrn polymer science
Language(s) - English
Resource type - Journals
ISSN - 2090-8733
DOI - 10.5402/2012/463298
Subject(s) - plasticizer , ultimate tensile strength , bran , materials science , starch , glycerol , composite material , citric acid , modified starch , food science , chemistry , raw material , organic chemistry
Mechanical properties of tapioca starch-based films were tuned by different additives and additive combinations. The additives included plasticizers (glycerol, sorbitol, and citric acid), inorganic fillers (halloysite and kaolin), and agrowaste-based fillers (milled wood flour and rice bran). In addition, new biobased additives were prepared from wood flour and rice bran through liquefaction reaction. Through different additive combinations, starch-based materials with significant differences in tensile properties were designed. Addition of halloysite nanoclay resulted in materials with improved tensile strength at break and rather low strain at break. The effect of kaolin on tensile strength was highly dependent on the used plasticizer. However, in most combinations the addition of kaolin resulted in materials with intermediate tensile strength and strain at break values. The addition of milled wood flour and rice bran improved the tensile strength, while the addition of liquefied fillers especially liquefied rice bran increased the strain at break indicating that liquefied rice bran could have potential as a plasticizer for starch blends.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom