z-logo
open-access-imgOpen Access
Activating Death Receptor DR5 as a Therapeutic Strategy for Rhabdomyosarcoma
Author(s) -
Zhigang Kang,
ShiYong Sun,
Liang Cao
Publication year - 2012
Publication title -
isrn oncology
Language(s) - English
Resource type - Journals
eISSN - 2090-567X
pISSN - 2090-5661
DOI - 10.5402/2012/395952
Subject(s) - myogenin , rhabdomyosarcoma , cancer research , mdm2 , apoptosis , soft tissue sarcoma , biology , embryonic stem cell , progenitor cell , medicine , sarcoma , skeletal muscle , pathology , microbiology and biotechnology , endocrinology , stem cell , gene , myogenesis , genetics
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. It is believed to arise from skeletal muscle progenitors, preserving the expression of genes critical for embryonic myogenic development such as MYOD1 and myogenin . RMS is classified as embryonal, which is more common in younger children, or alveolar, which is more prevalent in elder children and adults. Despite aggressive management including surgery, radiation, and chemotherapy, the outcome for children with metastatic RMS is dismal, and the prognosis has remained unchanged for decades. Apoptosis is a highly regulated process critical for embryonic development and tissue and organ homeostasis. Like other types of cancers, RMS develops by evading intrinsic apoptosis via mutations in the p53 tumor suppressor gene. However, the ability to induce apoptosis via the death receptor-dependent extrinsic pathway remains largely intact in tumors with p53 mutations. This paper focuses on activating extrinsic apoptosis as a therapeutic strategy for RMS by targeting the death receptor DR5 with a recombinant TRAIL ligand or agonistic antibodies directed against DR5.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom