Bag-of-Words Representation in Image Annotation: A Review
Author(s) -
ChihFong Tsai
Publication year - 2012
Publication title -
isrn artificial intelligence
Language(s) - English
Resource type - Journals
eISSN - 2090-7443
pISSN - 2090-7435
DOI - 10.5402/2012/376804
Subject(s) - image retrieval , automatic image annotation , computer science , annotation , information retrieval , bag of words model , feature (linguistics) , visual word , representation (politics) , image (mathematics) , class (philosophy) , content based image retrieval , artificial intelligence , pattern recognition (psychology) , linguistics , philosophy , politics , political science , law
Content-based image retrieval (CBIR) systems require users to query images by their low-level visual content; this not only makes it hard for users to formulate queries, but also can lead to unsatisfied retrieval results. To this end, image annotation was proposed. The aim of image annotation is to automatically assign keywords to images, so image retrieval users are able to query images by keywords. Image annotation can be regarded as the image classification problem: that images are represented by some low-level features and some supervised learning techniques are used to learn the mapping between low-level features and high-level concepts (i.e., class labels). One of the most widely used feature representation methods is bag-of-words (BoW). This paper reviews related works based on the issues of improving and/or applying BoW for image annotation. Moreover, many recent works (from 2006 to 2012) are compared in terms of the methodology of BoW feature generation and experimental design. In addition, several different issues in using BoW are discussed, and some important issues for future research are discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom