z-logo
open-access-imgOpen Access
Mechanics of Static Slip and Energy Dissipation in Sandwich Structures: Case of Homogeneous Elastic Beams in Transverse Magnetic Fields
Author(s) -
Charles A. Osheku
Publication year - 2012
Publication title -
isrn mechanical engineering
Language(s) - English
Resource type - Journals
eISSN - 2090-5130
pISSN - 2090-5122
DOI - 10.5402/2012/372019
Subject(s) - dissipation , slip (aerodynamics) , deflection (physics) , slip line field , clamping , mechanics , cantilever , classical mechanics , physics , transverse plane , materials science , structural engineering , thermodynamics , composite material , engineering , mechanical engineering , condensed matter physics , dislocation
Mechanics of static slip and energy dissipation in sandwich structures with respect to two-layer homogeneous elastic beams in a transverse magnetic field is presented. The mathematical physics problem derives from nonuniform contact conditions of press sandwich layers or joints. On this theory, equations governing the stresses and the deflection profile are derived. By restricting analysis to the case of cantilever architecture, closed form polynomial expressions are computed for the deflection, interfacial slip, slip, and strain energies of the system. In particular, the effects of magnetoelasticity and interfacial pressure gradient on these properties are demonstrated for design analysis and engineering applications. In addition, explicit mathematical equations couched in magnetoelasticity and pressure gradient polynomial kernels with fractional coefficients for critical values of pressure for which no slip occurs at the tip and the optimum clamping pressure for optimal slip energy dissipation are derived. It is also shown for special cases that recent results in literature are recoverable from the theory reported in this paper.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom