Optimization of Swarm-Based Simulations
Author(s) -
Sebastian von Mammen,
Abbas Sarraf Shirazi,
Vladimir Sarpe,
Christian Jacob
Publication year - 2012
Publication title -
isrn artificial intelligence
Language(s) - English
Resource type - Journals
eISSN - 2090-7443
pISSN - 2090-7435
DOI - 10.5402/2012/365791
Subject(s) - swarm behaviour , computer science , multiphysics , multi swarm optimization , abstraction , computation , metaheuristic , heuristic , swarm intelligence , population , representation (politics) , theoretical computer science , particle swarm optimization , mathematical optimization , artificial intelligence , algorithm , mathematics , finite element method , engineering , philosophy , demography , epistemology , sociology , politics , law , political science , structural engineering
In computational swarms, large numbers of reactive agents are simulated. The swarm individuals may coordinate their movements in a “search space” to create efficient routes, to occupy niches, or to find the highest peaks. From a more general perspective though, swarms are a means of representation and computation to bridge the gap between local, individual interactions, and global, emergent phenomena. Computational swarms bear great advantages over other numeric methods, for instance, regarding their extensibility, potential for real-time interaction, dynamic interaction topologies, close translation between natural science theory and the computational model, and the integration of multiscale and multiphysics aspects. However, the more comprehensive a swarm-based model becomes, the more demanding its configuration and the more costly its computation become. In this paper, we present an approach to effectively configure and efficiently compute swarm-based simulations by means of heuristic, population-based optimization techniques. We emphasize the commonalities of several of our recent studies that shed light on top-down model optimization and bottom-up abstraction techniques, culminating in a postulation of a general concept of self-organized optimization in swarm-based simulations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom