z-logo
open-access-imgOpen Access
Enzymatic Hydrolysis and Simultaneous Saccharification and Fermentation of Soybean Processing Intermediates for the Production of Ethanol and Concentration of Protein and Lipids
Author(s) -
Craig Long,
William R. Gibbons
Publication year - 2012
Publication title -
isrn microbiology
Language(s) - English
Resource type - Journals
eISSN - 2090-7486
pISSN - 2090-7478
DOI - 10.5402/2012/278092
Subject(s) - chemistry , hydrolysis , fermentation , food science , soybean meal , ethanol fuel , cellulase , enzymatic hydrolysis , ethanol , glucan , biochemistry , organic chemistry , raw material
Carbohydrates in soybeans are generally undesirable due to their low digestibility and because they “dilute” more valuable components (proteins, lipids). To remove these carbohydrates and raise the titer of more valuable components, ethanol production was investigated. Commercial enzymes (Novozyme cellulase, β -glucosidase, and pectinase) were added to ground soybeans (SB), soybean meal (SBM), soybean hulls (SH), and soybean white flakes (WF) at a 10% solids loading rate to quantify hydrolyzed glucan. Saccharification resulted in glucan reductions of 28%, 45%, 76%, and 80% (SBM, SB, SH, WF, resp.). Simultaneous saccharification and fermentation (SSF) trials were conducted at 5%, 10%, 15%, and 20% solids loading with Saccharomyces cerevisiae NRRL Y-2034 and Scheffersomyces stipitis NRRL Y-7124, with protein, fiber, and lipids analyzed at SSF 10% solids and saccharification trials. S. cerevisiae and S. stipitis produced ~3–12.5 g/L ethanol and ~2.5–8.6 g/L ethanol, respectively, on SB, SBM, and WF over all solid loading rates. SH resulted in higher ethanol titers for both S. cerevisiae (~9–23 g/L) and S. stipitis (~9.5–14.5 g/L). Protein concentrations decreased by 2.5–10% for the SB, SBM, and WF, but increased by 53%–55% in SH. Oil concentrations increased by ~50% for SB; by ~500%–1300% for the others.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom