Similitude Conditions Modeling Geosynthetic-Reinforced Piled Embankments Using FEM and FDM Techniques
Author(s) -
Keith Jennings,
P.J. Naughton
Publication year - 2012
Publication title -
isrn civil engineering
Language(s) - English
Resource type - Journals
eISSN - 2090-5114
pISSN - 2090-5106
DOI - 10.5402/2012/251726
Subject(s) - finite element method , geosynthetics , geotechnical engineering , structural engineering , tension (geology) , pile cap , rotational symmetry , engineering , pile , materials science , ultimate tensile strength , mathematics , composite material , geometry
The numerical modelling of geosynthetic-reinforced piled embankments using both the finite element method (FEM) and finite difference method (FDM) are compared. Plaxis 2D (FEM) was utilized to replicate FLAC (FDM) analysis originally presented by Han and Gabr on a unit cell axisymmetric model within a geosynthetic reinforced piled embankment (GRPE). The FEM and FED techniques were found to be in reasonable agreement, in both characteristic trend and absolute value. FEM consistently replicated the FDM outputs for deformational, loading, and load transfer mechanism (soil arching) response within the reinforced piled embankment structure with a reasonable degree of accuracy. However the FDM approach was found to give a slightly higher reinforcement tension and stress concentration but lower reinforcement strain at the pile cap than FEM, which was attributed to the greater discretize of the model geometry in the FDM than in FEM.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom