z-logo
open-access-imgOpen Access
Experimental Characterisation of the Far-Field Noise in Axial Fans Fitted with Shaped Tip End-Plates
Author(s) -
Stefano Bianchi,
Alessandro Corsini,
A. G. Sheard
Publication year - 2012
Publication title -
isrn mechanical engineering
Language(s) - English
Resource type - Journals
eISSN - 2090-5130
pISSN - 2090-5122
DOI - 10.5402/2012/212358
Subject(s) - acoustics , aerodynamics , sound power , vortex , directivity , near and far field , noise (video) , sound pressure , mechanical fan , leakage (economics) , physics , engineering , optics , mechanics , electrical engineering , computer science , sound (geography) , artificial intelligence , antenna (radio) , economics , image (mathematics) , macroeconomics
The authors investigate the far-field noise emissions of a datum fan blade fitted with tip end-plate geometries, originally designed to control the leakage vortex swirl level. The end-plate geometries influence the tip-leakage flow, vortex formation, and swirl level. In doing so, the end-plate geometries influence the sound-power levels. After an evaluation of fan rotors' aerodynamic performance, the study compares the rotors' far-field noise signature characterised in terms of sound-power and pressure-level spectra to enable and assess the end-plate acoustic pay-off. The investigation attempts to establish a cause-and-effect relationship between the tip-flow dynamics and the radiated sound fields, exploring the diverse directivity patterns. The authors found a tonal reduction, due to the enhanced blade-tip end-plates and clarified the relevance of the tip features influencing the radial distribution of the noise sources using coherence analysis. The modified multiple-vortex breakdown end-plate design was effective in reducing the broadband noise, giving an improvement in the frequency range of the turbulent noise.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom