z-logo
open-access-imgOpen Access
Comparison of LC-MS Assay and HPLC Assay of Busulfan in Clinical Pharmacokinetics Studies
Author(s) -
Hongxia Lin,
Susan Goodin,
Roger Strair,
Robert S. DiPaola,
Murugesan Gounder
Publication year - 2012
Publication title -
isrn analytical chemistry
Language(s) - English
Resource type - Journals
eISSN - 2090-732X
pISSN - 2090-7311
DOI - 10.5402/2012/198683
Subject(s) - chromatography , busulfan , high performance liquid chromatography , pharmacokinetics , chemistry , ammonium acetate , derivatization , extraction (chemistry) , therapeutic drug monitoring , detection limit , sample preparation , transplantation , pharmacology , medicine , hematopoietic stem cell transplantation , surgery
Busulfan is used in preparative regimens for bone marrow transplantation and timely busulfan plasma concentration reporting is critical for subsequent dose adjustment. We compared two sensitive methods for pharmacokinetics studies including LC-MS assay and HPLC precolumn derivatization assay. Chromatographic separation was performed on a Gemini C18 column. Liquid-liquid extraction with ethyl acetate was used for plasma sample preparation. Busulfan and internal standard ([2H8]-busulfan) were detected as ammonium adducts at m/z 264.2 and 272.2 for LC-MS assay. For HPLC assay, the extraction from plasma was derivatized with 2-naphathalenethiol using synthesized internal standard (1,6-(methanesulfonyloxy)octane). The Ex and Em wavelength was 255 nm and 370 nm. The limit of detection was 15.6 ng/mL and 7.8 ng/mL for HPLC and LC-MS assay and good linearity ranging from 31.25–1000 ng/mL for HPLC and 15.6-1000 ng/mL for LC-MS assay. The intra and interday assay precision were less than 9.2% and 12.0% for LC-MS and HPLC assay. The pharmacokinetic parameters were estimated using noncompartmental pharmacokinetic model with WinNonlin. Busulfan AUClast showed an average difference of 0.7% between the two methods. The LC-MS method is accurate, reproducible, and requires less specimen, sample preparation and analysis time over the HPLC assay, making busulfan monitoring faster and easier in clinical practice.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom