z-logo
open-access-imgOpen Access
Modeling Transport and Flow Regulatory Mechanisms of the Kidney
Author(s) -
Anita T. Layton
Publication year - 2012
Publication title -
isrn biomathematics
Language(s) - English
Resource type - Journals
ISSN - 2090-7702
DOI - 10.5402/2012/170594
Subject(s) - tubuloglomerular feedback , mechanism (biology) , renal function , renal physiology , renal blood flow , kidney , balance (ability) , chemistry , medicine , endocrinology , biology , neuroscience , philosophy , epistemology
The kidney plays an indispensable role in the regulation of whole-organism water balance, electrolyte balance, and acid-base balance, and in the excretion of metabolic wastes and toxins. In this paper, we review representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, and regulation of renal oxygen transport. We discuss how such modeling efforts have significantly expanded our understanding of renal function in both health and disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom