z-logo
open-access-imgOpen Access
An Inverse Design Method for Cascades for Low-Reynolds Number Flow
Author(s) -
Martin Böhle
Publication year - 2012
Publication title -
isrn applied mathematics
Language(s) - English
Resource type - Journals
eISSN - 2090-5572
pISSN - 2090-5564
DOI - 10.5402/2012/148607
Subject(s) - reynolds number , cascade , mechanics , inverse , aerodynamics , laminar flow , turbulence , boundary layer , flow (mathematics) , hele shaw flow , flow separation , mathematics , computational fluid dynamics , physics , geometry , engineering , chemical engineering
Inverse design of cascades for low Reynolds number can be applied for the aerodynamic development of fans and compressors. The present contribution describes a complete design procedure by taking into account the transition from laminar to turbulent boundary layer flow. A shape factor distribution is prescribed along the suction surface of the blades. The inverse boundary layer calculation is performed by the application of a finite difference method. On the pressure side the velocity distribution is prescribed in such a way that the given flow angles in front of and behind the cascade are realized. An inverse calculation based on potential theory is applied in order to determine the geometry of the cascade. At the end of the present contribution a cascade is designed by the described inverse design procedure and the flow is simulated by the application of CFD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom