Online Hierarchical Controller for Hybrid Power System
Author(s) -
Salem Zerkaoui
Publication year - 2012
Publication title -
isrn renewable energy
Language(s) - English
Resource type - Journals
eISSN - 2090-746X
pISSN - 2090-7451
DOI - 10.5402/2012/148563
Subject(s) - supervisor , control theory (sociology) , converters , robustness (evolution) , fuzzy logic , control engineering , computer science , nonlinear system , electric power system , controller (irrigation) , robust control , power (physics) , control system , engineering , control (management) , artificial intelligence , agronomy , biochemistry , physics , chemistry , quantum mechanics , biology , political science , law , gene , electrical engineering
This paper presents the basis for the development of an intelligent and autonomous energy management strategy for hybrid power system (HPS). Two hierarchical levels are proposed to control and manage the HPS. The low level is performed by a local control unit (DC-DC converters controller) of the different power sources. Dynamic equations describing the coupling of converters are derived, and a robust sliding mode dynamic controller is designed. The high level is performed by the online supervisor unit. This unit is designed by applying on-line Takagi-Sugeno fuzzy logic principles. As a result the robust control system gets rid of the limits of the HPS, which has the imprecision, uncertainty, strong coupling, and nonlinearity, to achieve its tractability, robustness, and low solution cost. Under the operation constraints related to each type of sources, the simulation results show that the optimal operation objective of HPS has been achieved.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom