z-logo
open-access-imgOpen Access
Fully Programmable Gaussian Function Generator Using Floating Gate MOS Transistor
Author(s) -
Richa Srivastava,
Maneesha Gupta,
Urvashi Singh
Publication year - 2012
Publication title -
isrn electronics
Language(s) - English
Resource type - Journals
ISSN - 2090-8679
DOI - 10.5402/2012/148492
Subject(s) - cmos , gaussian , transistor , computer science , gaussian function , electronic engineering , inversion (geology) , electrical engineering , voltage , engineering , physics , quantum mechanics , paleontology , structural basin , biology
Floating gate MOS (FGMOS) based fully programmable Gaussian function generator is presented. The circuit combines the tunable property of FGMOS transistor, exponential characteristics of MOS transistor in weak inversion, and its square law characteristic in strong inversion region to implement the function. Two-quadrant current mode squarer is the core subcircuit of Gaussian function generator that helps to implement full Gaussian function for positive as well as negative input current. FGMOS implementation of the circuit reduces the current mismatching error and increases the tunability of the circuit. The performance of circuit is verified at 1.8 V in TSMC 0.18 μm CMOS, BSIM3, and Level 49 technology by using Cadence Spectre simulator.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom