Inclusion Relationships for Certain Subclasses of Meromorphic Functions Defined by Using the Extended Multiplier Transformations
Author(s) -
R. M. El-Ashwah
Publication year - 2012
Publication title -
isrn mathematical analysis
Language(s) - English
Resource type - Journals
eISSN - 2090-4665
pISSN - 2090-4657
DOI - 10.5402/2012/106079
Subject(s) - hadamard product , multiplier (economics) , mathematics , meromorphic function , analytic function , operator (biology) , hadamard transform , class (philosophy) , algebra over a field , set (abstract data type) , unit (ring theory) , pure mathematics , product (mathematics) , inclusion (mineral) , mathematical analysis , computer science , artificial intelligence , mathematics education , biochemistry , chemistry , geometry , repressor , gene , transcription factor , economics , macroeconomics , programming language , gender studies , sociology
Let ∑ denote the class of analytic functions in the punctured unit disc ∗={∶0<||<1}. Set ,l∑()=1/
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom