z-logo
open-access-imgOpen Access
A Note on the Kelvin Effect in 100Cr6 Steel with Application to Identification of the Elastoplastic Limit
Author(s) -
Håkan Hallberg
Publication year - 2012
Publication title -
isrn thermodynamics
Language(s) - English
Resource type - Journals
eISSN - 2090-5211
pISSN - 2090-5203
DOI - 10.5402/2012/106051
Subject(s) - materials science , dissipation , drop (telecommunication) , plasticity , stress (linguistics) , mechanics , yield (engineering) , shakedown , thermodynamics , composite material , metallurgy , physics , telecommunications , linguistics , philosophy , finite element method , computer science
Experimental and analytical results are presented regarding the temperature evolution in 100Cr6 steel under uniaxial loading. Differently heat-treated conditions of the material are studied at different strain rates. In the annealed state, the materials exhibits a pronounced initial yield stress as it passes from the elastic region to the plastic through discontinuous yielding. In contrast, the quenched and tempered material yields continuously. The focus of the paper is on the temperature decrease during elastic deformation that precedes the more pronounced heating due to inelastic dissipation once the elastoplastic limit stress is surpassed. The applicability of the maximum temperature decrease in the elastic regime as a replacement for the commonly used 0.2%-strain measure to define the elastoplastic limit is discussed. For 100Cr6 steel, the 0.2%-strain measure is found, in some cases, to overestimate the initial yield stress by 50 MPa. The drop in temperature corresponding to the shift from elastic to inelastic material behavior is experimentally determined and compared to predictions by the Kelvin formula which in the current study give a maximum 50% error

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom