Orthotropic Models of Corrugated Sheets in Finite Element Analysis
Author(s) -
David Wennberg,
Per Wennhage,
Sebastian Stichel
Publication year - 2011
Publication title -
isrn mechanical engineering
Language(s) - English
Resource type - Journals
eISSN - 2090-5130
pISSN - 2090-5122
DOI - 10.5402/2011/979532
Subject(s) - orthotropic material , finite element method , structural engineering , vibration , buckling , similarity (geometry) , transverse plane , materials science , engineering , physics , computer science , acoustics , artificial intelligence , image (mathematics)
To reduce computational effort of finite element (FE) calculations a corrugated sheet is replaced with an orthotropic plate. Analytical expressions for the mechanical properties are studied and compared to finite Element calculations in extension, free vibration, and buckling. Good similarity is shown in the stiffened and transverse direction of the corrugated sheet; however, the orthotropic models do not give an accurate twisting behavior. The stiffened direction of the corrugated sheet best matches the analytical expressions. Keeping in mind the presented limitation, the orthotropic model presented herein can be used to drastically reduce the number of elements needed when modelling corrugated sheet with finite elements.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom