Modeling and Optimization of a Residential Solar Stand-Alone Power System
Author(s) -
H. A. Khater,
Amr A. Abdelraouf,
Mohamed Beshr
Publication year - 2011
Publication title -
isrn renewable energy
Language(s) - English
Resource type - Journals
eISSN - 2090-746X
pISSN - 2090-7451
DOI - 10.5402/2011/853953
Subject(s) - photovoltaic system , matlab , electricity , automotive engineering , environmental science , power (physics) , electric power system , engineering , computer science , electrical engineering , physics , quantum mechanics , operating system
Modeling and optimization of a residential solar-powered stand-alone power system comprising photovoltaic (PV) arrays and secondary batteries are presented. Moreover, an economic study is performed to determine the cost of electricity (COE) produced from this system so as to determine its competitiveness with the conventional sources of electricity. All of the calculations are performed using a computer code developed by using MATLAB. The system output was calculated for Cairo city (30°01′N, 31°14′E) in Egypt. It was found that dual-axis solar tracking is not economically feasible while cooling of the PV surface helps to lower the COE of the system. Also, the average maximum efficiency of the modeled 200 W solar cells was 14.16%. The system which has an efficiency of 12% showed a great ability to satisfy the estimated demand load. The COE obtained from the system was found to be 41.7 cents/kWh over 20 years of its operation with an expected future cost of 31 cents/kWh.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom