z-logo
open-access-imgOpen Access
Solubility and Dissolution Enhancement of Etoricoxib by Solid Dispersion Technique Using Sugar Carriers
Author(s) -
Abhisekh Das,
Amit Kumar Nayak,
Biswaranjan Mohanty,
Satyabrata Panda
Publication year - 2011
Publication title -
isrn pharmaceutics
Language(s) - English
Resource type - Journals
eISSN - 2090-6153
pISSN - 2090-6145
DOI - 10.5402/2011/819765
Subject(s) - etoricoxib , dissolution , solubility , solvent , chemistry , fourier transform infrared spectroscopy , chromatography , dispersion (optics) , mannitol , dissolution testing , dosage form , materials science , nuclear chemistry , chemical engineering , organic chemistry , biopharmaceutics classification system , engineering , physics , optics
The aim of the present study was to improve solubility and dissolution of the poorly aqueous soluble drug, etoricoxib by solvent evaporation technique using various sugar carriers, such as lactose, sucrose, and mannitol. Etoricoxib solid dispersions and their respective physical mixtures using lactose, sucrose, and mannitol were prepared in different ratios by solvent evaporation technique. The percent yield, drug content, saturation solubility, and in vitro dissolution of etoricoxib solid dispersions and physical mixtures were analyzed. Etoricoxib solid dispersions were characterized by FTIR spectroscopy, XRD, and DSC analysis. The FTIR spectroscopic analysis revealed the possibility of intermolecular hydrogen bonding in various solid dispersions. The XRD and DSC studies indicated the transformation of crystalline etoricoxib (in pure drug) to amorphous etoricoxib (in solid dispersions) by the solid dispersion technology. Both the aqueous solubility and dissolution of etoricoxib were observed in all etoricoxib solid dispersions as compared with pure etoricoxib and their physical mixtures. The in vitro dissolution studies exhibited improved dissolution in case of solid dispersion using lactose than the solid dispersions using both sucrose and mannitol. The in vitro dissolution of etoricoxib from these solid dispersions followed Hixson-Crowell model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom