The Fundamental Groups of m-Quasi-Einstein Manifolds
Author(s) -
Hee Kwon Lee
Publication year - 2011
Publication title -
isrn geometry
Language(s) - English
Resource type - Journals
eISSN - 2090-6315
pISSN - 2090-6307
DOI - 10.5402/2011/812541
Subject(s) - ricci flow , einstein , ricci curvature , ricci decomposition , einstein tensor , mathematics , generalization , metric (unit) , pure mathematics , mathematical physics , constant (computer programming) , topology (electrical circuits) , mathematical analysis , riemann curvature tensor , combinatorics , geometry , computer science , operations management , curvature , economics , programming language
In Ricci flow theory, the topology of Ricci soliton is important. We call a metric quasi-Einstein if the m-Bakry-Emery Ricci tensor is a constant multiple of the metric tensor. This is a generalization of gradient shrinking Ricci soliton. In this paper, we will prove the finiteness of the fundamental group of m-quasi-Einstein with a positive constant multiple.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom