z-logo
open-access-imgOpen Access
Shrinking Projection Method for Fixed Point Problems of an Infinite Family of Strictly Pseudocontractive Mappings and the System of Cocoercive Quasivariational Inclusions Problems in Hilbert Spaces
Author(s) -
Pattanapong Tianchai
Publication year - 2011
Publication title -
isrn mathematical analysis
Language(s) - English
Resource type - Journals
eISSN - 2090-4665
pISSN - 2090-4657
DOI - 10.5402/2011/795379
Subject(s) - hilbert space , convergence (economics) , projection (relational algebra) , fixed point , set (abstract data type) , mathematics , scheme (mathematics) , projection method , mathematical analysis , dykstra's projection algorithm , computer science , mathematical optimization , algorithm , economics , programming language , economic growth
This paper is concerned with a common element of the set of common fixed points for an infinite family of strictly pseudocontractive mappings and the set of solutions of a system of cocoercive quasivariational inclusions problems in Hilbert spaces. The strong convergence theorem for the above two sets is obtained by a general iterative scheme based on the shrinking projection method, and the applicability of the results is shown to extend and improve some well-known results existing in the current literature.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom