Electroless Ni-P Coatings: Preparation and Evaluation of Fracture Toughness and Scratch Hardness
Author(s) -
Wagner Sade,
Reinaldo Trindade Proença,
Thiago Daniel de Oliveira Moura,
José Roberto Tavares Branco
Publication year - 2011
Publication title -
isrn materials science
Language(s) - English
Resource type - Journals
eISSN - 2090-6099
pISSN - 2090-6080
DOI - 10.5402/2011/693046
Subject(s) - materials science , scratch , fracture toughness , microstructure , coating , metallurgy , toughness , corrosion , composite material , crystallization , chemical engineering , engineering
Ni-P chemical coatings have been used to prevent wear, corrosion and as an alternative for hard chromium, since the latter's deposition processing is very harmful to the human health and the environment. In the present paper, Ni-P coatings with 8 and 10% P were deposited in steel AISI 1020 and thermally treated. Ni-1wt%P coatings with incorporation of hard particles of Al2O3 were also investigated. The microstructure and phase relationships were analyzed and correlated with the fracture toughness and scratch hardness of the coatings.The results show that the fracture toughness of the coating was smaller when thermally treated at 400°C for 1 hour and the scratch hardness reached a peak in this temperature. The relation of chemical composition and microstructure with mechanical properties of Ni-P coatings is presented. The phosphorus contents, the crystallization, and the incorporation of hard particles in the coatings change the values of toughness fracture and scratch hardness.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom