A Decrement Method for Quantifying Nonlinear and Linear Damping in Multidegree of Freedom Systems
Author(s) -
Craig Meskell
Publication year - 2011
Publication title -
isrn mechanical engineering
Language(s) - English
Resource type - Journals
eISSN - 2090-5130
pISSN - 2090-5122
DOI - 10.5402/2011/659484
Subject(s) - nonlinear system , control theory (sociology) , frequency domain , natural frequency , damping ratio , frequency response , linear system , distortion (music) , physics , degrees of freedom (physics and chemistry) , magnetic damping , inertial frame of reference , stiffness , mathematics , mathematical analysis , acoustics , engineering , classical mechanics , vibration , computer science , amplifier , control (management) , optoelectronics , cmos , quantum mechanics , artificial intelligence , electrical engineering , thermodynamics
A method is presented which can estimate the linear and nonlinear damping parameters in a lightly damped multidegree of freedom system which allows the system to be decomposed into a set of single degree of freedom nonlinear systems. Only a single response measurement from a free decay test is required as input ensuring that the magnitude of the damping parameters is not compromised by phase distortion between measurements. The response is band-pass filtered in the time domain, around each of the natural frequencies. While this provides a free response measurement for each mode, it introduces a restriction as the natural frequencies must be distinct and separated. The instantaneous energy of each trace is used to describe the long-term evolution of the mode. This is achieved by using only the peak amplitudes in each period, and so the stiffness and inertial forces are effectively ignored, and only the damping forces are considered. Thus, the method is not unlike the familiar decrement method, which can estimate the viscous damping in linear systems. The method is developed for a weakly nonlinear, lightly damped two-degree-of-freedom system, with both linear and Coulomb damping. Simulated response data is used to demonstrate the accuracy of the technique.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom