Evaluation of Dynamic Materials Procured from Waste Biomass
Author(s) -
Ashish Chauhan,
Balbir Kaith
Publication year - 2011
Publication title -
isrn materials science
Language(s) - English
Resource type - Journals
eISSN - 2090-6099
pISSN - 2090-6080
DOI - 10.5402/2011/393489
Subject(s) - hibiscus sabdariffa , materials science , acrylate , monomer , dynamic mechanical analysis , copolymer , methyl acrylate , chemical resistance , young's modulus , composite material , polymer , polymer chemistry , chemical engineering , chemistry , food science , engineering
Methyl acrylate (MA) monomer was graft copolymerized onto Hibiscus sabdariffa stem fiber and used to explore the additive effect of vinyl acrylate (VA) and ethyl acrylate (EA) on percentage grafting and the properties of the fiber, in binary vinyl monomeric mixtures. The graft copolymers were reinforced into phenol-formaldehyde polymer matrix to form biocomposites and characterized by FTIR, XRD, TGA, DTA, and SEM techniques. They were evaluated for physico-chemical changes in properties like moisture absorption at different relative humidity levels and chemical resistance against 1 N NaOH and 1 N HCl. These graft copolymers-reinforced biocomposites had higher mechanical strength like hardness, modulus of rupture, modulus of elasticity, and stress at the limit of proportionality. These novel materials can have numerous scientific and industrial applications for the development of technology.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom